OCR Additional Maths Exam Questions - Constant Acceleration

5	Parcels slide down a ramp. Due to resistance the deceleration is $0.25\mathrm{ms^{-2}}$.			
	 (i) One parcel is given an initial velocity of 2 m s⁻¹. Find the distance travelled before the parcel comes to rest. 			
	(ii) A second parcel is given an initial velocity of 3 m s⁻¹ and takes 4 seconds to reach the bottom of the ramp. Find the length of the ramp.[3]			
6	An aeroplane touches down at a point A on a runway, travelling at 90 m s ⁻¹ . It then decelerates uniformly until it reaches a speed of 6 m s ⁻¹ at a point B on the runway, 2016 m from A.			

[3]

[2]

[4]

A car moves from rest with constant acceleration on a straight road. When the car passes a point A it is travelling at 10 m s⁻¹ and when it passes a point B further along the road it is travelling at 16 m s⁻¹.

The car takes 10 seconds to travel from A to B.

(ii) Find the time taken to travel from A to B.

Find

· the distance AB,

(i) Find the deceleration.

the constant acceleration.

12	A train normally travels between two points A and D at a constant speed of 30 metres per The distance AD is 12 kilometres.	second.
	(i) Find the time taken for the train to travel between A and D at $30 \mathrm{ms^{-1}}$.	[1]
	Between A and D there are two other points, B and C, which are placed such that $AB = 2 \text{ km}$, $BC = 6 \text{ km}$ and $CD = 4 \text{ km}$. On one day there is a speed restriction of 10 m s^{-1} between B and C.	
	The train decelerates uniformly from $30\mathrm{ms^{-1}}$ at A to $10\mathrm{ms^{-1}}$ at B. It travels the distance $10\mathrm{ms^{-1}}$. The train then accelerates uniformly from $10\mathrm{ms^{-1}}$ at C to $30\mathrm{ms^{-1}}$ at D.	e BC at
	Find	
	(ii) the time taken to travel from A to B,	[2]
	(iii) the acceleration over the distance CD,	[3]
	(iv) the extra time taken in travelling from A to D as a result of the speed restriction.	[6]
5	A car is travelling along a motorway at $30 \mathrm{ms^{-1}}$. At the moment that it passes a point A	
5	A car is travelling along a motorway at 30m s^{-1} . At the moment that it passes a point A are applied so that the car decelerates with constant deceleration. When it reaches a point AB = 300m , the speed of the car is 10m s^{-1} .	
5	are applied so that the car decelerates with constant deceleration. When it reaches a point $AB = 300 \text{ m}$, the speed of the car is 10 m s^{-1} .	nt B, where
5	are applied so that the car decelerates with constant deceleration. When it reaches a point $AB = 300 \text{ m}$, the speed of the car is 10 m s^{-1} . Calculate	nt B, where
5	are applied so that the car decelerates with constant deceleration. When it reaches a point $AB = 300 \text{ m}$, the speed of the car is 10 m s^{-1} . Calculate (i) the constant deceleration,	[3]
	are applied so that the car decelerates with constant deceleration. When it reaches a point AB = 300 m, the speed of the car is 10 m s ⁻¹ . Calculate (i) the constant deceleration, (ii) the time taken to travel from A to B. A driver of a car, initially moving at 30 m s ⁻¹ , applies the brakes so that the car comes to	[3]